Model-based optimization of coffee roasting process: Model development, prediction, optimization and application to upgrading of Robusta coffee beans
บทความในวารสาร
ผู้เขียน/บรรณาธิการ
กลุ่มสาขาการวิจัยเชิงกลยุทธ์
รายละเอียดสำหรับงานพิมพ์
รายชื่อผู้แต่ง: Ratanasanya, San; Chindapan, Nathamol; Polvichai, Jumpol; Sirinaovakul, Booncharoen; Devahastin, Sakamon;
ผู้เผยแพร่: Elsevier
ปีที่เผยแพร่ (ค.ศ.): 2022
วารสาร: Journal of Food Engineering (0260-8774)
Volume number: 318
นอก: 0260-8774
ภาษา: English-United States (EN-US)
ดูในเว็บของวิทยาศาสตร์ | ดูบนเว็บไซต์ของสำนักพิมพ์ | บทความในเว็บของวิทยาศาสตร์
บทคัดย่อ
Since coffee bean roasting is a complicated process involving transient transport processes along with complex chemical reactions, modeling and optimizing such process is a challenge. Here, machine learning was first used to formulate models that allowed predictions of selected quality indicators of coffee beans undergoing hot air or superheated steam roasting at various conditions. Starling particle swarm optimization (SPSO) as well as other swarm intelligence and gradient-based algorithms were then used to determine conditions that would yield roasted beans with quality indicators similar to those of benchmarks. Test was also performed to determine if Robusta beans could be roasted at conditions depicted by SPSO to yield the beans with quality indicators similar to those of commercial blend of Arabica and Robusta beans. SPSO predicted values of quality indicators with average errors of lower than 9% and 13% when laboratory-scaled Robusta beans and commercial blend of beans were used as benchmarks. © 2021 Elsevier Ltd
คำสำคัญ
Starling particle swarm optimization