A Geometrical Approach to the Diophantine Equation x^{2}_{1}+x_{2}^{2}+x_{3}^{2}+...+x_{n}^{2}=u^{2}

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listRatchanikorn Chonchaiya, Warin Vipismakul and Arisa Jiratampradab

Publication year2021

Volume number26

Issue number3

Start page1364

End page1370

Number of pages7

ISSN2351-0781

URLhttp://science.buu.ac.th/ojs246/index.php/sci/article/view/3471

LanguagesEnglish-United States (EN-US)


Abstract

We find all Diophantine solutions for the equation x^{2}_{1}+x_{2}^{2}+x_{3}^{2}+...+x_{n}^{2}=u^{2} by refining the geometrical approach from ( Ayoub, 1984) to find solutions of the equation x^{2}+y^{2}+z^{2}=u^{2} . We can find all rational points on the unit n-sphere by lines connecting those rational points to the point (1, 0, ..., 0 ). Such linear parametric equations will always have rational slopes.


Keywords

Diophantine solutions


Last updated on 2022-03-03 at 10:54