Electron beam radiation delayed the disassembly of cell wall polysaccharides in harvested mangoes

Journal article


Authors/Editors


Strategic Research Themes


Publication Details

Author listNguyen T.T., Kato M., Ma G., Zhang L., Uthairatanakij A., Srilaong V., Laohakunjit N., Jitareerat P.

PublisherElsevier

Publication year2021

JournalPostharvest Biology and Technology (0925-5214)

Volume number178

ISSN0925-5214

eISSN1873-2356

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85103968639&doi=10.1016%2fj.postharvbio.2021.111544&partnerID=40&md5=c06e08425a5d89aa42a11d282c683a78

LanguagesEnglish-Great Britain (EN-GB)


View in Web of Science | View on publisher site | View citing articles in Web of Science


Abstract

Fruit softening, accompanied by cell wall polysaccharides degradation, is a common phenomenon in harvested mango (Mangifera indica L.) fruit. To reduce fruit's firmness loss and maintain cell wall polysaccharides of mangoes, the effect of electron beam (E-beam) radiation on firmness, cell wall degrading enzyme activities, contents of cell wall polysaccharides, reactive oxygen species (ROS), and the expression of genes involved with fruit softening were studied in harvested mangoes stored at 13 ℃. As compared with untreated fruit, E-beam treated fruit at a dose of 0.5 kGy exhibited higher firmness, higher contents of cell wall polysaccharides, such as sodium carbonate-soluble pectin, hemicellulose and cellulose, as well as a lower content of water-soluble pectin, a lower activity of cell wall degrading enzymes, such as pectin esterase (PE), β-galactosidase (BG), pectate lyase (PEL) and cellulase (CEL), except polygalacturonase (PG), and lower contents of hydrogen peroxide (H2O2) and superoxide radical (O2–[rad]) during the storage period. In addition, E-beam radiation also suppressed the expression of MiPE, MiPEL, and MiBG genes. These results suggest that E-beam radiation retards the softening process by reducing the production of H2O2 and O2–[rad], and that they are caused to alternate plant cell wall polysaccharides and retard the transcript level of genes involved in fruit softening in harvested mangoes. © 2021 Elsevier B.V.


Keywords

Cell wall degrading enzymes activityCell wall polysaccharidesGenes expressionIonizing radiation


Last updated on 2023-06-10 at 10:06